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5. 1 .
Sens physique do premier principe

55. 1
.
1

. Energie en mécanique Crappell

Le concept d'énergie a été initialement élaboré

en mécanique. D

↑· ↓g

Energie mécanique : ↑
mh

Emec = Ecin + Epot
Emec = 1mv+ migh

L'énergie mécanique est constante lorsque le
système est soumis exclusivement à des
forces dévivant d'une énergie potentielle.



Si le système est soumis à desforces qui ne

dérivent pas d'une énergie potentielle, alors l'énergie
n'est pas forcement constante :

SEm = W
L travail des forces

non conservatives

Exemple : Las d'une force de frottement
,
l'énergie

de l'objet en mouvement décroit à cause

du frottement. La force de frottement travaille.

En fait
, l'énergie est " perdue" sous forme

de chaleur.
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. Energie en thermodynamique

En thermodynamique ,
la chaleur (= flux d'énergie)

est incluse dans le bilan d'energie en incluant

un terme d'énergie supplémentaire U
, l'énergie interne.

L'énergie interne est l'énergie microscopique totale.

L'énergie totale d'un système est la somme des

E = Ecint Epor + U

Le premier principe postule que l'énergie totale
d'un système isole est conservée (si on considere toutes

les formes d'énergie).
travail, chaleur,

S O matièreL'énergie ne peut changer qu'avec un echange
avec l'extérieur

.

C'est la formulation du principe de conservation
de l'énergie.



Dans la plupart des cas de ce cours, on considérera

des systèmes immobiles (macroscopiquement), et dans
un champ gravitationnel constant

=> Ec = Ep = 0

-

macroscopiques

Ce qui nous permet d'ecrive :

E = U

Nous verrons dans ce chapitre qu'une différence d'énergie
interne peut être due par deux échanges d'énergies
entre le systèmefermé et l'environnement :

↳
pas d'échange de matière

SE = su = W +Q
↑ T
travail chaleur



Convention de signe Crappel) :

Si la quantité est gagnée par le système,
elle est positive (négative si perdue

~ Système
t

7 t

&
L S

energie matière

Parcourous maintenant les concepts d'énergie interne U,
de travail W et de chaleur Q avant de donner
une formulation plus précise do premier principe :

dU = SW + SQ



5. 2
. L'énergie interne U

5.2
.
1. Définition

· Rappel du chapitre 2 : Dans lecas du modèle du

gaz partait , l'énergie cinétique est la somme de
l'énergie cinétique des molécules composant le système.

· Dans locas général :

* U est la somme de toute l'énergie de toutes
les molécules composant le systeme.

* U est une variable d'état

* U dépend de l'état macroscopique d'un système,
V est une fonction d'état



Pour un gaz partait :

- gaz partait mono-atomique (rappel) :

U = [ En lécule
Smolecules

6
#degrés de liberté quadratique

avecinter.
principe d'équipartition de l'énergie

Cas d'un gaz mono-atomique : la molécule est un atome pouvant
se déplacer en translation dans les trois directions (x

,y,z) :

E1mu + 1 mu + Env
1

↑1 = + = 3

> EScule = ElisT->
UX

=> U = ENkBT



- gaz partait diatomique avec une liaison rigide :

Exemple : H2

# degrés de liberté quadratique :

- - 3 translations : 1mvx?
H

Imvmu

w - zrotations :Fo,wi

↳Fo,wy
- on néglige le moment
d'inertie suivant la

liaison T
-Oz

= f = 5

=> U=NBT



- gaz partait diatomique avec une liaison élastique :

Exemple : N2 a harte température

N N

Ovo
-

To

# degrés de liberté quadratique :

->etranslations + 2 rotations

=> énergie potentielle de la liaison élastique : Epot=1k(u-nd

- énergie cinétique liée au déplacement des atomes :

Fain
,
vib

= Im (d
↑

masse réduite

=> t = 7

= U = ENRBT

Ces relations seront utilisées plus tard dans le cours
,

lorsqu'on verra la chaleur spécifique d'un gaz à volume constant.



Remarque : pour un même élément
,
le nombre de degré de

liberté quadratique dépend de la température.

En pratique , il y a one température minimale
Cou Energie thermique minimale) pour rendre

possible les différents mouvements (or les

différents modes)
.

C'est ce qu'on appelle le gel des degrés
de liberté

.

Exemple pour H2

85k 6000K
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.3. Echange d'énergie par travail

-traitementarepar rappement"
① ②

Le travail élémentaire reçu par un til an cours

d'un allongement entre deux positions d'équilibre
mécaniques distantes de Il est :

/SW = F.E = Fde)

Remarques : · SW est un accroissement infinitésimal
· On note SW car on n'est pas sur que w

est une différentielle totale exacte. On verra que
ce n'est

pas le cas ! 2 (cf. chapitre 1)



Travail élémentaire reçu par un fluide

5.3
.

1. Formulation générale

0-

SW = F.Y
Piston

~
surface S

SW= Episton &X

tor fluide SW = Fiston S d

SW = Pext (-dVevide)
Avec la pression extérieure Pext = Episton

5
et Sdx = -dVfluide

SW = - Pext &V

Remarque :Ssigue : comprimer un gaz (dVco) implique
un travail positif (-PetdV >0)

,
le gaz

a son énergie totale qui augmente



Pour une transformation d'un état A B
,
le travail est

calculé en faisant la somme/l'intégrale des travaux

infinitésimaux :

B

Wa-B=SW = - (Pendv

-exemple: compression d'un gaz

N
②

Dans ce cas Pext est constante

W
1-z

= - [Pext dV = -Next = - Pext(vz-Vn)
1

V1

We
.z

= - Pext (Vz-Un)

Remarque : On ne peut pas aller plus loin à ce stade car onne

connaît pas ,
uniquement le travail du poids avec pext.



Cas particulier : transformation quasi-statique :

Une transformation quasi-statique est une transformation

qui se déroule très lentement par rapport au temps

que met le système à trouver son équilibre. Pour

une transformation quasi-statique ,
lefluide reste

à l'équilibre thermodynamique à chaque instant.

En notant [= temps caractéristique de la transformation
Fin = temps de thermalisation (équilibre (

Si [ It transformation quasi-statique
[ Eth transformation hors -équilibre

Remarque : Conséquence d'une transformation quasi-statique :

L'état d'équilibre peut être décrit grace aux

variables d'états et la transformation pert
être représenté dans un diagramme d'et at
(p. ex . diagramme de Clapeyron p-V).



5
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3
.

2
. Travail élémentaire reçu par un fluide lors d'une

transformation quasi-statique :

0-

Transformation quasi-statique

↑
gaz

surfaces => Le système est à
I l'équilibre thermodynamique

à chaque instanttor fluide exercées sur le piston
La somme des forces

&

est nulle.

[ = Fiston +Faz=pression du
tide

piston

11 Fiston Pert . S = p
. S = IlFgazll

Pext = P

On a donc :

SW = -pdV



Exemple : Compression quasi-statique d'un gaz partait :

On considère cette fois-ci une compression quasi-statique
d'un gaz parfait à température constante (T= cte)

.

"Il
SW = -pdV avec p=

2

W
=/- pdV=Tar

= nRTSV
w = nMTin()
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W n'est pas une différentielle totale exacte

Est-ce
que W dépend du chemin utilisé pour

la transformation?

Exemple : transformation quasi-statique d'un gaz partait

On connait l'état Initial A
Pr

et l'état final B. -
Si le calcul de W ne dépend pas

B

du chemin
,

on peut calculer Va VB i
Wen choisissant 2 chemins arbitrairement
et on trouverait le même résultat.

per chemin : isotherme AtB (T= cte)

w=pdV = -nRTV = nRTIn()A

zèmechemin : isobareA( (Picte) + isochore (-> B (V = cte)

WapdV =-p = Fa(VA -V)
A



Comme W W
,
SW n'est pas une

différentielle totale exacte
.

=> On écriva SW au lieu de dW

et W au lieu de AW.

5

.3
.
4. Interprétation graphique

Le travail échangé lors d'une transformation entre

deux états AetB = aire sous la courbe d'un

diagramme P-V.

Pr Pr Pr
PA A

PA A A
VB B

,
B

VA VB
V

VA VB
V VA VB

V



5. 4
. Echange d'énergie sous forme de chaleur

5. 4
.

1. Histoire (simplifiée et incomplète)
· La théorie du calorique
Joseph Black (1728-1799) A

.

Lavoisier (1733-1794)

Théorie du calorique : le calorique est un fluide

qui passe d'un corps à l'autre (du chaud au froid).

# est perçu comme un corps sans masse qui est

compris dans les solides et les liquides.



Le nom de calorie est resté comme unité de mesure
pratique de la chaleur.

1 calorie = chaleur qui fait augmenter 19 d'ear
de 1°

C Centre 14.
5% et 15.

5%)

Remarque : 1 Notation : 1Calorie = 1000 calories = 1 kcal
T P

calorie des nutritionnistes

· Expérience de Joule : équivalence calorifique du travail
James Prescolt Joule (1818-1889)

ear
- poids

-pales



1.P
. Joule observe que fournir du travail mécanique (brassage
du liquide par les pales) au liquide fait augmenter sa

température.
Cette observation va à l'encontre de l'existence d'un fluide

calorique> abandon de la théorie du calorique

Bilan des connaissances :

- travail mécanique [1] et énergie calorifique[cal]
sont de même nature : de l'énergie [2]

unité SI

- relation quantitative : 1 cal = 4
.
18]

- on peut convertir de la chaleur en travail

1 S. Carnot 1823) et du travail en chaleur

(J .
P. Soule ~1845)

.



Le transfert d'énergie sous forme de chaleur entre

le systeme et le milieu extérieur peut induire soit :

- une variation de température du système
- un changement de phase

Pour un changement de température, on introduit la notion
de chaleur spécifique, pour le changement de phase , on

introduit la notion de chaleur latente de transformation
(cf

. chapitre 4).

-. 4 .
2

. Chaleur spécifiques (

La chaleur spécifique or capacité calorifique
est la grandeur qui lie la chaleur à la temperature.

Q = CAT
1

I
chaleur spécifique do système



Sous forme infinitésimale (chaleur élémentaire) :

SQ = (dT

Notez qu'on a utilisé SQ et non pas dQ ,
onhe

sait pas à priori si Q est une différentielle

totale exacte
.

Remarques : · En général (dépend de la température
· (dépend du type de transformation
(a pression constante , volume constant ...

)

· A Bien véritier les unités
,

on utilise partois
la chaleur spécifique massiquecm ou

la chaleur spécifique molaireCm

C = mcm = n(m

Unités : ([JK"] <[1kmoln]
cm[1K kg1]



·cm [SKkg1] la chaleur spécifique est souvent utilisée

pour des substances solides ou liquides.

· Pour des gaz,on utilisera le plus souvent la chaleur
spécifique ( or la chaleur spécifique molaire.

* Pour les gaz C dépend du type de transformation
et C sera différente si le processus est à volume

or pression constante .

&

5.3
.

2
.
1. Chaleur specifique d'un gaz à volume constant

· Soit un gaz dans un volume V à la pression P.

V constant
Ona Q = CAT "Y//-gaz

↳ [Ik-13 &
ou Q = n Cum ST

-

↳ [JK-mol]



Comme V = ce => W = -Pext &V = 0

=> AV = W + Q

AU = CusT

ou sous forme différentielle :

du = CvdT

On a trouvé une expression pour la chaleur spécifique
d'un gaz à volume constant :

Cu=



Cas d'un gaz partait :
Première loi deJoule :

* Pour un gaz partait, U

ne dépend que de T

.

- gaz parfait monoatomique : U = ENEBT
= (v = ENk de des gaz partait

↓

cravec N = n NA et NA . Kis=R (cf. chapitre2)

(v = EnR R = 8
.

314 Jmd-1

or Cum = ER =Cum = 12
. 47

- gaz partait diatomique avec liaison rigide : U=InRT

=> C = EnR ou Com =E R

= (vm = 20
. 79

-

gaz partait diatomique avec liaison élastique : U= EnRT
=>(v = EnR ou Cum = ER = (vm =29

.
10

Cum = R
T

f : nombre de degré
de liberté quadratiques

&

du systeme
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Chaleur spécifique d'un gaz à pression
constante

· Soit un gaz soumis à une pression constante

Ona Q = CAT
~

P constante

or
<YK-1] gaz

Q = n(pmST
2 mo-"k=1]

-

Comme V n'est pas constant, on a une partie de l'énergie
qui estéchangée sous forme de travail. 31 s'agit du

travail nécessaire à faire bouger le piston. On considère

ici une transformation quasi-statique.

W = - pSV

1) y a également une partie de l'énergie échangée sous

forme de chaleur : Q = CpAT



On a donc : Su = W + Q

Au = -PAV + CAT

Dans ce cas (pconstante)
,
il est utile d'introduire

une nouvelle fonction d'état :

Enthalpie : H = U + pV

Avec cette définition : &H = dV+ V + pdV
= O

dH =
-pdV +(pdT +pdV

dH = CpdT

=>(p = L ou Cr



Cas d'un gaz partait:

Prenons cette fois-ci le cas général d'un gaz partait

composé de molécules ayant f degrés de liberté

quadratiques.
pV = nRT

↓

H = U + pV = EnRT + nRT

Seconde loi de Toute :

H= RT Pour un gaz partait,
l'enthalpie ne depend
que de la température

(p=R ou (pm = ER

= R

-

m m ~ m

- f= 3 = (pm= 20
.79

- f=5 => (pm = 29
.
10

-f= 7 =3 (pm = 37
.
41



On peut définir le coefficient adiabatique pour les

gaz parfaits :

=

#

- f= 3 => y = 5 = 1
. 67

3

- f = 5 = > y = E = 1
.

40

- f = 7 = y =E = 1
.29

Remarque : pour un même élément
,
le nombre de degré de

liberté quadratique dépend de la température.
C'est ce qu'on appelle le gel des degrés
de liberté

.



On peut également trouver une relation entre CetCp :

Relation de Mayer (p-C = nR

pour un gaz
Ou

parfait
Cpm-Cum = R

Résumé des relations pour un gaz partait :

père loi de Zoule :

dU = EnRdT = CdT avec Cr=
2ème loi deSoule :

dH=RdT = CpdT avec (p==
relation de Mayer

Cp-C = nR

coefficient adiabatique

==
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5 Chaleur latente de transformation

Rappel du chapitre :

Tous les changements de phase entre solide
, liquide et

gaz sont accompagnés d'un échange d'énergie
sous forme de chaleur, appelé chaleur latente
de transformation L.

chaleur latente de transformation L:

quantité d'énergie nécessaire pour qu'une
substance change de phase sans changement
de température ni de pression :

=p [1kg1]

Avec SQ la quantité de chaleur à fournir au systeme
de masse dm pour effectuer la transformation

en gardant Pet T constants.



· Exemple pour 1kg 120 à P= natm

#Chatles
L tusion (E=02) = 334b3K1 ~80 kcal k -1

Lvaporisation (T=1002) = 2265kJK-1 ~ 541 Real K
-1

gaz
TIOCJ

100
1

-

Liquide + gaz

·

liquide

0 .
St

S

-200 Toug0vigo V -731]

Q [kcal]



· Exemples de chaleur latente de fusion et vaporisation
à pression atmosphérique :
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6 Qu'est pas une differentielle totale exacte

Retaisons le même exercice que pour le travail W.

Est-ce
que Q dépend du chemin utilisé pour

la transformation?

Exemple : transformation quasi-statique d'un gaz partait

· Aet B sont sur une isotherme P ①
. CTA =TB =T

Teche
et PAVA=nRT =Text -

-PB D
·

B
· PaVi = nRTc = Tc==

Va Vi Y
· PBVA = nRTD =Th=
Q = <p(Tc -T) + (ST-Tc)

=> (p - ()(Tn -T)

= nR(T-T)
= nR (A)



P1

QQ = ((Tp-T) + (p)T-Tb) Q

= (-(p)(Tp -T) Pa-is
P- o

=

- nR(T -T) Va Vi Y
=
-nR(E)T
= nR (VA)

Comme Va #Vi = Qg Q

SQ n'est pas une différentielle totale exacte

=> On écrira SQ au lieu de dQ

et Q au lieu de AQ
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Le premier principe de la thermodynamique

On a vu que le travail l'échange d'énergie macroscopique
et la chaleur (échange d'énergie microscopique)ne

sont pas des différentielles totales exactes
.

I

W et Q dépendent du chemin utilisé pour la
transformation

I
Wet Q ne sont pas des grandeurs conservatives

MAIS : &V = SW + SQ est une grandeur conservée !

Remarque : · C'est l'énergie totale qui est conservée

dE = d(Emacroma) = SW + SQ



Dans les problèmes qu'on considère généralement
dans ce cours :

- le système est macroscopiquement au

repos => Emacro = 0

- le système est soumis à des champs exterieurs

négligeables or constants => Emacro= constant

On a donc dE = dV = SW + SQ

Premier
ou AV = Q +W principe

dU est une différentielle totale exacte
,

sa valeur

ne dépend pas du chemin utilisé pour la transformation.



Implication do premier principe :

AV = W +Q

B

Sau = Up-Un = (Sw + /S
A

&
CA->B CAtB

-m
Indépendants
du chemin dépendants du chemin

(CA-B doit être le même pour
les 2 intégrales (

=> Pour calculer SU entre AetB on peut choisir le
chemin qui va nous simplifier les calculs

(exp : transformations avec p,VouT constant)



-6. Applications do premier principe

Nous pourons Etudier 4 types de transformations particulières :

1) Isochore (V = constante)

2) Isobare (p = constante)

3) Isotherme (T= constante)

4) Adiabatique (Q=0
, pas d'échange de chaleur)

Etudions chacune de ces transformation
pour un gaz partait

et en utilisant le premier principe. On suppose que
ces transformations sont quasi-statiques .

1) Isochore (V = constant)

Pr

SW = -pdV =o Pa ·A

=O

Pis · B
=> dV = SQ=RdT

S
V V



2) Isobare (P = constante)

P S

SW = -pdV T

B

WAis = SSW
↳lWas

AT
VB

Va Vi Su
&

= ( - pdV =p(Vz -VA) = p(A-Viz)o

VA
La détente isobare fournit du travail à l'exterieur!

WBA = p(VB-VA) La compression isobare utilise du travail
de l'extérieur !

3) Isotherme (T= constante)

T= constante => pV = nRT = constante (pourun sferme

P1Az n = constant)
perprincipe : dV = SW + SQ ↳An

.⑨et dV = EnR & Bz
TT

By
=SQ = -SW 2

V



SQ = -SW P1Az

⑨- Pour une compression isotherme (dV co
,
dT =0)

An
.&BT

SW = -pdV so
By

2

=> SQo V

Le système fournit de l'énergie sous forme de chaleur

mais en gagne sous forme de travail

- Pour une détente isotherme (dV20
,
dT=0)

SW = -pdV co

=> SQ0

Le système gagne de l'énergie sous forme de chaleur

mais enfournit sous forme de travail.

Calculons plus précisément le travail fournit/gagné par

le système pour une détente/compression isotherme.



Détente isotherme :

B Pp A.

NB = SSW
↳ MiisotherA

,
T

VB 2

= (-pdV A VB V

VA

->NBTdV = -RTV=R
VA VA

= nRT(n()
le gaz fournit

du travail

Compression isotherme :

A

WAB = ⑮ SW = nRTIn() >
T

le gaz utilise du
travail pour

effectuer la compression



4) Adiabatique (SQ =0)

dU = SW+
Par Agso=o

PB ⑳

et dU =n(vdT B

va vi Y
= n(ndT = -pd

n(vdT =-V
m

CvdT + RTdV=

=> deMayer
u
coeft. adiabatiquem Relation
↓↳ RCeI

m

dT + (y -1)d = 0

F

En intégrant on trouve :

In(t) + (y - 1) (n(V) = constante

In (T) + In (vo-1) = constante

In (TVr) = constante



=> TV5-1 = constante

Ou en terme de per V :

T=

=
V VV = constanteet

~constante

=> pVV = constante

Rappel : U = CC1 est l'exposant adiabatique

Pour une compression adiabatique :

DU = -pAV = nCumST
~

Par Agso=o

To

30

= AT30 PB ⑳

B

2
Pour une détente adiabatique ATCO va vi

V



Comparaison isotherme/adiabatique : Pr
A

isotherme : P = nRT

T

pente A-nRT adiaatieet-

v2

=ce
Va Vis VoY

adiabatique : p = che v
=8

dP = -che V-1-8-1c-2 = l'adiabatique a

Tu une pente plus
raide que l'isotherme

Remarque : Certaines transformations sont adiabatiques

parce qu'elles sont trèsrapides.

Ces transformations ne sont pas quasi-statiques
(irréversibles) et ne pervent pas être représentées

dans un diagramme d'état.

Exemple : détente de Joule


